Anne-Laure Papa
Anne-Laure Papa
Associate Professor
Contact:
Professor Papa has developed an expertise in engineering novel therapeutic platforms at the interface of chemistry, biology, and medicine. She focuses her work on disease processes, particularly in cancer and vascular diseases, toward the goal of designing targeted translational therapies and new diagnostic methods. Her research is based on understanding system interactions (i.e. cell-cell and cell-particle) and delivery platforms (particle-based targeting strategies as well as cellular therapeutics). Her lab is geared to using this knowledge to identify both therapy-related and disease-related factors that can be used in a synergistic way to maximize the potential of these novel approaches.
- M. Sc., University of Bourgogne, France, 2006
- Ph.D., University of Bourgogne, France, 2009
- Postdoctoral fellow, Brigham and Women's Hospital and Harvard–MIT Program of Health Sciences and Technology, 2010-2012
- Postdoctoral fellow, Wyss Institute for Biologically Inspired Engineering at Harvard University, 2012-2017
Cellular Therapeutics
Ex vivo modified Platelets to delay Metastasis and Thrombosis: Professor Papa’s lab develops modified platelets, obtained from healthy donors, and tests them as competitive inhibitors of platelets in the bloodstream towards disrupting the vital support of platelets to circulating tumor cells. The antiplatelet effect of this new approach is also being investigated in the context of vascular diseases. The team aims to develop this new platform as a potential therapeutic, as well as a diagnostic tool with broad applications.
Next-Generation Particle based-Therapeutic Delivery
Particles have been studied as a targeting platform in disease models so as to maximize drug delivery and subsequent effect at pathological site, while decreasing adverse effects of drugs on healthy tissues. In the context of cancer, particle formulations have been approved; however, the major benefit appears to be in reducing toxicity. The team is interested in developing the next generation of particle-based therapeutic delivery (such as drug, nucleotides, proteins) and studying the interaction of these systems with the vascular endothelium, immune cells, stromal cells and plasma proteins.
Biomedical engineering
Materials
Nanotechnologies
Tissue engineering and biomaterials
*corresponding authors; ** these authors have contributed equally to the work
- Schnoor, B.; Morris, K.; Kottana, R. K.; Muldoon, R.; Barron, J.; Papa*, A.-L. Fibrinolytic Platelet Decoys Reduce Cancer Metastasis by Dissociating Circulating Tumor Cell Clusters. Advanced Healthcare Materials, 2024, accepted.
- Kottana**, R. K.; Schnoor**, B.; Papa*, A.-L. A Method to Quantitatively Characterize the Formation and Dissociation of Tumor Cell Clusters Using Light Transmission Aggregometry. Molecular Oncology, 2024, accepted.
- Morris**, K.; Schnoor**, B.; Papa*, A.-L. Platelet Cancer Cell Interplay as a New Therapeutic Target. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 2022, 1877 (5), 188770. https://doi.org/10.1016/j.bbcan.2022.188770.
- Schnoor, B.; Papa*, A.-L. Lyophilized Platelets Inhibit Platelet Aggregation with Simultaneous Paradoxical Promotion of Platelet Adhesion. Front. Bioeng. Biotechnol. 2022, 10, 941817. https://doi.org/10.3389/fbioe.2022.941817.
- Bilynsky, C.; Millot, N.; Papa*, A. Radiation Nanosensitizers in Cancer Therapy—From Preclinical Discoveries to the Outcomes of Early Clinical Trials. Bioengineering & Transla Med 2022, 7 (1). https://doi.org/10.1002/btm2.10256.
- Kottana, R. K.; Maurizi, L.; Schnoor, B.; Morris, K.; Webb, J. A.; Massiah, M. A.; Millot, N.; Papa*, A. Anti‐Platelet Effect Induced by Iron Oxide Nanoparticles: Correlation with Conformational Change in Fibrinogen. Small 2020, 2004945. https://doi.org/10.1002/smll.202004945.
- Papa*, A.-L.; Jiang, A.; Korin, N.; Chen, M. B.; Langan, E. T.; Waterhouse, A.; Nash, E.; Caroff, J.; Graveline, A.; Vernet, A.; Mammoto, A.; Mammoto, T.; Jain, A.; Kamm, R. D.; Gounis, M. J.; Ingber*, D. E. Platelet Decoys Inhibit Thrombosis and Prevent Metastatic Tumor Formation in Preclinical Models. Sci Transl Med 2019, 11 (479). https://doi.org/10.1126/scitranslmed.aau5898.
- Papa, A.-L.; Korin, N.; Kanapathipillai, M.; Mammoto, A.; Mammoto, T.; Jiang, A.; Mannix, R.; Uzun, O.; Johnson, C.; Bhatta, D.; Cuneo, G.; Ingber*, D. E. Ultrasound-Sensitive Nanoparticle Aggregates for Targeted Drug Delivery. Biomaterials 2017, 139, 187–194. https://doi.org/10.1016/j.biomaterials.2017.06.003.
- Jain, A.; van der Meer, A. D.; Papa, A.-L.; Barrile, R.; Lai, A.; Schlechter, B. L.; Otieno, M. A.; Louden, C. S.; Hamilton, G. A.; Michelson, A. D.; Frelinger, A. L.; Ingber*, D. E. Assessment of Whole Blood Thrombosis in a Microfluidic Device Lined by Fixed Human Endothelium. Biomed Microdevices 2016, 18 (4), 73. https://doi.org/10.1007/s10544-016-0095-6.
- Papa, A.-L.; Boudon, J.; Bellat, V.; Loiseau, A.; Bisht, H.; Sallem, F.; Chassagnon, R.; Bérard, V.; Millot*, N. Dispersion of Titanate Nanotubes for Nanomedicine: Comparison of PEI and PEG Nanohybrids. Dalton Trans 2015, 44 (2), 739–746. https://doi.org/10.1039/c4dt02552k.
- Maurizi, L.; Papa, A.-L.; Dumont, L.; Bouyer, F.; Walker, P.; Vandroux, D.; Millot*, N. Influence of Surface Charge and Polymer Coating on Internalization and Biodistribution of Polyethylene Glycol-Modified Iron Oxide Nanoparticles. j biomed nanotechnol 2015, 11 (1), 126–136. https://doi.org/10.1166/jbn.2015.1996.
- Marosfoi, M. G.; Korin, N.; Gounis, M. J.; Uzun, O.; Vedantham, S.; Langan, E. T.; Papa, A.-L.; Brooks, O. W.; Johnson, C.; Puri, A. S.; Bhatta, D.; Kanapathipillai, M.; Bronstein, B. R.; Chueh, J.-Y.; Ingber*, D. E.; Wakhloo*, A. K. Shear-Activated Nanoparticle Aggregates Combined With Temporary Endovascular Bypass to Treat Large Vessel Occlusion. Stroke 2015, 46 (12), 3507–3513. https://doi.org/10.1161/STROKEAHA.115.011063.
- Pandey, A.; Sarangi, S.; Chien, K.; Sengupta, P.; Papa, A.-L.; Basu, S.; Sengupta*, S. Anti-Platelet Agents Augment Cisplatin Nanoparticle Cytotoxicity by Enhancing Tumor Vasculature Permeability and Drug Delivery. Nanotechnology 2014, 25 (44), 445101. https://doi.org/10.1088/0957-4484/25/44/445101.
- Sarangi, S.; Pandey, A.; Papa, A.-L.; Sengupta, P.; Kopparam, J.; Dadwal, U.; Basu, S.; Sengupta*, S. P2Y12 Receptor Inhibition Augments Cytotoxic Effects of Cisplatin in Breast Cancer. Med. Oncol. 2013, 30 (2), 567. https://doi.org/10.1007/s12032-013-0567-y.
- Papa, A.-L.; Sidiqui, A.; Balasubramanian, S. U. A.; Sarangi, S.; Luchette, M.; Sengupta, S.; Harfouche*, R. PEGylated Liposomal Gemcitabine: Insights into a Potential Breast Cancer Therapeutic. Cell Oncol (Dordr) 2013, 36 (6), 449–457. https://doi.org/10.1007/s13402-013-0146-4.
- Papa, A.-L.; Dumont, L.; Vandroux, D.; Millot*, N. Titanate Nanotubes: Towards a Novel and Safer Nanovector for Cardiomyocytes. Nanotoxicology 2013, 7 (6), 1131–1142. https://doi.org/10.3109/17435390.2012.710661.
- Mirjolet, C.; Papa, A. L.; Créhange, G.; Raguin, O.; Seignez, C.; Paul, C.; Truc, G.; Maingon, P.; Millot*, N. The Radiosensitization Effect of Titanate Nanotubes as a New Tool in Radiation Therapy for Glioblastoma: A Proof-of-Concept. Radiother Oncol 2013, 108 (1), 136–142. https://doi.org/10.1016/j.radonc.2013.04.004.
- Paraskar, A.; Soni, S.; Roy, B.; Papa, A.-L.; Sengupta*, S. Rationally Designed Oxaliplatin-Nanoparticle for Enhanced Antitumor Efficacy. Nanotechnology 2012, 23 (7), 075103. https://doi.org/10.1088/0957-4484/23/7/075103.
- Papa, A.-L.; Basu, S.; Sengupta, P.; Banerjee, D.; Sengupta, S.; Harfouche*, R. Mechanistic Studies of Gemcitabine-Loaded Nanoplatforms in Resistant Pancreatic Cancer Cells. BMC Cancer 2012, 12, 419. https://doi.org/10.1186/1471-2407-12-419.
- Papa, A.-L.; Maurizi, L.; Vandroux, D.; Walker, P.; Millot*, N. Synthesis of Titanate Nanotubes Directly Coated with USPIO in Hydrothermal Conditions: A New Detectable Nanocarrier. J. Phys. Chem. C 2011, 115 (39), 19012–19017. https://doi.org/10.1021/jp2056893.
- Papa, A.-L.; Millot*, N.; Saviot, L.; Chassagnon, R.; Heintz, O. Effect of Reaction Parameters on Composition and Morphology of Titanate Nanomaterials. J. Phys. Chem. C 2009, 113 (29), 12682–12689. https://doi.org/10.1021/jp903195h.
- Saviot*, L.; Netting, C. H.; Murray, D. B.; Rols, S.; Mermet, A.; Papa, A.-L.; Pighini, C.; Aymes, D.; Millot, N. Inelastic Neutron Scattering Due to Acoustic Vibrations Confined in Nanoparticles: Theory and Experiment. Phys. Rev. B 2008, 78 (24), 245426. https://doi.org/10.1103/PhysRevB.78.245426.
Book Chapters
(1) Maurizi L, Papa AL, Boudon J, Sudhakaran S, Pruvot B, Vandroux D, Chluba J, Lizard G, Millot N. Toxicological Risk Assessment of Emerging Nanomaterials: Cytotoxicity, Cellular Uptake, Effects on Biogenesis and Cell Organelle Activity, Acute Toxicity and Biodistribution of Oxide Nanoparticles. Unraveling the Safety Profile of Nanoscale Particles and Materials-From Biomedical to Environmental Applications. 2018;InTech. https://www.intechopen.com/books/unraveling-the-safety-profile-of-nanoscale-particles-and-materials-from-biomedical-to-environmental-applications/toxicological-risk-assessment-of-emerging-nanomaterials-cytotoxicity-cellular-uptake-effects-on-biog
(2) Boudon J, Papa A-L, Paris J, Millot N. Titanate nanotubes as a versatile platform for nanomedicine. Nanomedicine. 2014;One Central Press:404-29. http://www.onecentralpress.com/wp-content/uploads/2014/11/CHAPTER-16-NM-09-LATEST.pdf
(3) Boudon J, Sallem F, Loiseau A, Maurizi L, Papa A.-L., Millot N, Development of novel versatile theranostic platforms based on titanate nanotubes: towards safe nanocarriers for biomedical applications, 2021.